ALLEN AIR ROTARY INDEX TABLES are precision indexing mechanisms... unsurpassed in accuracy, performance and dollar value. We know of no other Tables of equal accuracy and quality available at comparable prices.

Every detail of construction is designed to increase durability and efficiency, and provide for long, trouble-free life. All parts susceptible to wear are carefully hardened. Bronze and roller bearings are incorporated. Working parts completely enclosed to protect against dust, dirt, and chips.

The Tables effect substantial savings in time and money in a wide variety of applications. For example, the Tables permit fast, automatic feeding of parts to tools in machine and assembly operations. Parts can be loaded and unloaded while machining operations continue. Other applications include cleaning and positioning operations, as well as use in conjunction with conveyor drive units.

ALLEN AIR ROTARY INDEX TABLES are available in a COMPLETE PRODUCT RANGE of four basic models, and each model can be supplied with any one of the following operating options.

1) As a basic Table with no operating valves. A 2-way or 3-way valve can be mounted on the rear of the drive cylinder as an option. (See “Basic Table” Illustration, Page 98).
2) As a basic Table with a Pilot Timer Valve (PTV4), a 2-way valve (V2), and piped with flexible air hose ready for continuous automatic indexing. (See “Pilot-Timer Control Circuit” Illustration, Page 98).
3) As a basic Table with a Single Solenoid Bleed Pilot 4-way Valve (VSESA-AAS-1/4), a 2-way valve (V2), and piped with flexible air hose ready for use. (See “Solenoid Bleed Pilot Control Circuit” Illustration, Page 98).
4) As a basic Table with a Single Solenoid Pressure Pilot 4-way Valve (VSSAP-AAS-1/4), a 3-way valve (V23), and piped with flexible air hose ready for use. (See “Solenoid Pressure Pilot Control Circuit” Illustration, Page 98).
5) As a basic Table with a Double Pressure Pilot 4-way Valve (VAP-1/4), a 3-way valve (V23), and piped with flexible air hose ready for use. (See “Double Pressure Pilot Control Circuit” Illustration, Page 98).
6) As a basic Table with a Double Bleed Pilot 4-way Valve (VSA-1/4), a 2-way valve (V2), and piped with a flexible air hose ready for use. (See “Double Bleed Pilot Control Circuit” Illustration, Page 98).

For Allenair “TIME-A-VALVE”® see Page 85. A solid state Electronic Timer, integral with Allenair Solenoid Operators. The standard 24 notch index plate can be set by means of baffle plates to allow 4, 6, 8, 12 or 24 indexes. Special indexes from 5 to 100 are available. A Flow Control Valve is also furnished on all models to control indexing speeds. Standard and optional Top Plates, of mild steel, are readily workable, and are precision ground, flat and parallel, to within .002 T.I.R.
PNEUMATIC DRIVE
- Double-acting Cylinder with precision honed brass tubing and self-adjusting Buna-N piston cups.
- Inlet pressure can be adjusted to provide exact force for moving load (and to prevent damage in case of accidental obstructions).
- Adjustable Flow Control to provide exact indexing speed required.
- Built in Plunger mounted at rear of Cylinder to actuate a Two-Way (V2), Three-Way (V23), or a Micro-Switch.
- Long trouble-free life.

GUARANTEED ACCURACY WITHIN +/- .001
- All stations are accurate to each other within ± .001 measured at the periphery of the standard size top plate.
- Repeatability at a station is in the low tenths.

GEAR AND RACK CONSTRUCTION
A rack attached to the stainless steel piston rod drives a gear which carries a pawl to actuate the index plate. Only a rack and gear drive can transmit the straight line motion of the air cylinder to the necessary rotary motion with full power throughout its cycle. The rack is supported against thrust by two roller bearings independently of the piston rod. Rack, gear, pawl and index plate are all carefully hardened.

CENTER STUD
- The hardened Center Stud has the top plate & index plate rigidly pinned to it.
- Stud is supported and rides in a 2-1/4" diameter x 9/16" long bronze bearing at top and an oilite bearing at the bottom.
- The gear and attached pawl oscillate about the stud on two needle bearings.
- A single grease fitting at the center lubricates all internal parts.

ACCESSORY PIN
Since the working parts of the table are completely enclosed, a rod extending thru a bronze bushing moves outward (approximately 1/4") to actuate a valve or micro-switch for secondary operations as the table comes into its new indexed position. This pin remains extended while the Table is in the indexed position.

FEED PAWL
- Hardened pawl stops against a hardened stop pin and prevents any forward rotary motion.
- Hardened anti-back-up pawl locks table against rearward rotary motion. (Located 180° from feed pawl.)

INDEX PLATE
The standard table can be set to index 90° (4 index), 60° (6 index), 45° (8 index), 30° (12 index), or 15° (24 index). Since the standard index plate has 24 teeth, baffles are used to prevent “loss of index,” that is, to prevent the pawl from engaging improper teeth. When less than 24 index is required. These baffles are very reasonably priced and always available from stock. The changeover from one index setup to another can be made from the top of the index table, usually in less than 15 minutes.

NOTE: For clarity and explanation this illustration is shown without top plate and rider plate.
**ROTARY INDEX TABLES**

**DESCRIPTION AND SPECIFICATIONS**

**MODELS 725:** These models are designed for rapid indexing under rather light load conditions, the maximum indexing load being 60 lbs. with either the standard 7-1/4” or optional 10” dia. Top Plate. Two styles are available. Model 725-G permits piping of air to the top of the Center Stud, for actuation of small air operated devices such as air chucks, collets or clamps, while Model 725-E does not. Both models have spring tension on the Feed Pawl, which insures constant and proper engagement with the Indexing Plate. A dual purpose Mounting Base enables horizontal or vertical mounting, and both styles are available in clockwise or counterclockwise rotation. A hole through the Center Stud (9/16” dia. only) is available as an option on Model 725-E.

**MODEL 11-E:** This model, being larger and heavier than Model 725, is designed for more rugged operations. The maximum indexing load is 100 lbs. with the standard 11” dia. Top Plate and 80 lbs. with the optional 16” dia. Top Plate. Spring tension on the Feed Pawl insures constant and proper engagement with the Indexing Plate. One of its outstanding features is the “Positive Locking” Device, which securely locks the Feed Pawl to the Indexing Plate by an internal over-center latching mechanism. This design, together with the optional Hydraulic Check, allows the Table to perform at the high load limits specified. The Hydraulic Check (CODE THC), which is adjustable, cushions approximately the last 5° of rotation and helps to control the shock of heavier loads.

Two additional drive options can be added to this model. One is the Tandem-in-Line Cyl-Check Drive (T-2-1/2 x 4 - CHT-FLH-5, CODE CHD) which gives hydraulic control and provides precise, constant, smooth indexing. The second optional drive employs a Tandem Cylinder (ETT-2-1/2 x 4, CODE TCD). This provides higher torque (as differentiated from index load) than the standard drive cylinder. A hole through the Center Stud (9/16” dia. only) is available as an option.

**MODEL 11-F:** This is the heaviest duty model in the line, the maximum indexing load being 180 lbs. with either the standard 11” or optional 16” dia. Top Plate, and 100 lbs. with the optional 20” dia. Top Plate. One of its outstanding features is the “Positive Locking” Device, which securely locks the Feed Pawl to the Indexing Plate by an internal over-center latching mechanism. This design, together with the optional Hydraulic Check, allows the Table to perform at the high load limits specified. The Hydraulic Check (CODE THC), which is adjustable, cushions approximately the last 5° of rotation and helps to control the shock of heavier loads.

Two additional drive options can be added to this model. One is the Tandem-in-Line Cyl-Check Drive (T-2-1/2 x 4 - CHT-FLH-5, CODE CHD) which gives hydraulic control and provides precise, constant, smooth indexing. The second optional drive employs a Tandem Cylinder (ETT-2-1/2 x 4, CODE TCD). This provides higher torque (as differentiated from index load) than the standard drive cylinder. A hole through the Center Stud (9/16” dia. only) is available as an option.

**MODEL 11-EF:** This model is almost identical to Model 11-F. The basic difference is that on Model 11-EF we use the Model 11-E Index Plate, and incorporate the Positive Lock Device of Model 11-F. This allows for slightly faster indexing, but the two optional drives and Hydraulic Check (as listed for Model 11-F) are not available. The maximum indexing load is 140 lbs. with the standard 11” dia. Top Plate and 100 lbs. with the optional 16” dia. Top Plate. A hole through the Center Stud (9/16” dia. only) is available as an option.

**NOTES:**

1) The figures for “Indexing Load Weights” mentioned above are based on symmetrically placed loads located 1” from the periphery of the specified Top Plates.

2) For further information concerning Principle of Operation and Speeds, see pages 99 and 100.

### STANDARD SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>725</th>
<th>11-E</th>
<th>11-EF</th>
<th>11-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Top Plate Diameters</td>
<td>7-1/4”</td>
<td>11”</td>
<td>11”</td>
<td>11”</td>
</tr>
<tr>
<td>“Optional Top Plate Diameters”</td>
<td>10”</td>
<td>16”</td>
<td>16”</td>
<td>16” &amp; 20”</td>
</tr>
<tr>
<td>Maximum Indexing Load (Lbs.) (See Indexing Speed Charts.)</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>180</td>
</tr>
<tr>
<td><strong>Maximum Process Load (Lbs.)</strong></td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Minimum Line Pressure (PSI)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Maximum Recm’d Line Press. (PSI)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Torque at 80 PSI (Inch-Lbs.)</td>
<td>210</td>
<td>640</td>
<td>640</td>
<td>640</td>
</tr>
<tr>
<td>Maximum Number of Stations (Optional)</td>
<td>60</td>
<td>100</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Nominal Unit Weight (Lbs.)</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

**NOTES:**

2 position and 3 position can be obtained by indexing twice with a 4 or 6 station table. *These are maximum recommended diameters. **Normal machining or operational, non-shock loads applied vertically within table base area (3” radius on 725 Models and 4” radius on 11 Models). Consult factory or distributor for assistance on special cases.

### SIMPLE PROCEDURE TO CHANGE NUMBER OF INDEXES (ALL SERIES)**

- Remove Top Plate, Rider Plate and Center Stud Assembly
- Re-engage Gear so that proper No. of Station Marking matches scribed tooth on Rack
- Reassemble unit with new Baffle Plate for indexes required

**REFER TO MAINTENANCE MANUAL SUPPLIED WITH TABLE, FORM TMM, FOR DETAILS**

### TYPICAL MODEL NUMBER

How to order (details follow in sequence)

- Select size and type
- Select standard options
- Select no. Of stations (4, 6, 8, 12, or 24 are std.)
- Specify optional equipment or voltage when required

### OPTION

- Large Top Plate
- Voltage, When Required
- Hydraulic Check
- Cycheck Feed
- Tandem Cylinder

### SPECIFY

- Size
- Voltage
- THC
- CHD
- TCD

**LAST 3 OPTIONS AVAILABLE ON MODEL 11F ONLY**
### STANDARD INDEX TABLE OPTIONS (11-F SERIES PICTURED)

<table>
<thead>
<tr>
<th>7-1/4&quot; SIZE TABLES:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard Model (Clockwise Rotation)</strong></td>
<td>725-ED</td>
<td>725-EB</td>
</tr>
<tr>
<td><strong>Counter Clockwise Rotation</strong></td>
<td>725-EDC</td>
<td>725-EBC</td>
</tr>
<tr>
<td><strong>Air Supply Port (1/4 NPT) in Center Stud</strong></td>
<td>725-GA</td>
<td>725-GB</td>
</tr>
<tr>
<td><strong>with Counter Clockwise Rotation</strong></td>
<td>725-GDC</td>
<td>725-GBC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11&quot; SIZE TABLES:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard Duty Model (Clockwise Rotation)</strong></td>
<td>11-ED</td>
<td>11-EE</td>
</tr>
<tr>
<td><strong>Counter Clockwise Rotation</strong></td>
<td>11-EDC</td>
<td>11-EBC</td>
</tr>
<tr>
<td>**<strong>Heavy Duty Model (Clockwise Rotation)</strong></td>
<td>11-FA</td>
<td>11-FB</td>
</tr>
<tr>
<td>**<strong>Combination Duty (Clockwise Rotation)</strong></td>
<td>11-EFD</td>
<td>11-EFE</td>
</tr>
</tbody>
</table>

### BASIC TABLE

### PILOT-TIMER CONTROL CIRCUIT
(Continuous, Automatic Indexing)

### *SOLENOID BLEED PILOT CONTROL CIRCUIT*
(Indexes on Momentary Signal)

### 7-1/4" SIZE TABLES:

<table>
<thead>
<tr>
<th>7-1/4&quot; SIZE TABLES:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard Model (Clockwise Rotation)</strong></td>
<td>725-ED</td>
<td>725-EB</td>
</tr>
<tr>
<td><strong>Counter Clockwise Rotation</strong></td>
<td>725-EDC</td>
<td>725-EBC</td>
</tr>
<tr>
<td><strong>Air Supply Port (1/4 NPT) in Center Stud</strong></td>
<td>725-GA</td>
<td>725-GB</td>
</tr>
<tr>
<td><strong>with Counter Clockwise Rotation</strong></td>
<td>725-GDC</td>
<td>725-GBC</td>
</tr>
</tbody>
</table>

### NOTES:

*Standard Voltages on Single Solenoid Valve (Model VSESA-1/4-AAS. and VSSAP-1/4) are 12, 24, 120 & 240/60, and 6, 12 & 24/DC. Other popular voltages available at no additional cost.

**Not available in Counterclockwise Rotation
**PRINCIPLE OF OPERATION**

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>BASIC TABLE OPERATION</th>
<th>SOLENOID BLEED PILOT CONTROL CIRCUIT OPERATION (OPTIONAL)</th>
<th>SOLENOID PRESSURE PILOT CONTROL CIRCUIT OPERATION (OPTIONAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKING SEQUENCE</td>
<td>Driving Cylinder is in “Advanced” Position with Feed Pawl &amp; Anti-Back-Up Pawl Locking Table in Working Position.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETRACTION STROKE</td>
<td>Supply Air Pressure to Front Cylinder Port, Exhaust Rear. Rack will retract Drive Gear and Feed Pawl. Momentary Electric Signal to Solenoid Valve will automatically provide functions described under basic operation.</td>
<td>Momentary Electric Signal to Solenoid Valve will automatically provide functions described under basic operation.</td>
<td></td>
</tr>
<tr>
<td>DRIVE STROKE</td>
<td>Supply Air Pressure to Rear Cylinder Port. Exhaust Front. Rack will advance Drive Gear, engaging Feed Pawl in Indexing Plate to rotate Top Plate Forward. Accessory Pin shifts 3/16” at end of rotation to signal secondary operations. Set Flow Control to desired indexing speed. When Cylinder completes retraction, Built-in Two-Way Valve is actuated by Piston, shifting Main Valve to provide functions described under basic operation. Solenoid Valve is ready for next signal following dwell period.</td>
<td>When Cylinder completes retraction, Built-in Three-Way Valve is actuated by Piston, shifting Main Valve to provide functions described under basic operation. Solenoid Valve is ready for next signal following dwell period.</td>
<td></td>
</tr>
<tr>
<td>INDEXED POSITION</td>
<td>At completion of drive stroke, Feed Pawl locks Table against forward movement and Anti-Back-Up Pawl locks against rearward movement during work at stations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**GENERAL: (ALL SERIES)**

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>DOUBLE PRESSURE PILOT CONTROL CIRCUIT OPERATION (OPTIONAL)</th>
<th>DOUBLE BLEED PILOT CONTROL CIRCUIT OPERATION (OPTIONAL)</th>
<th>PILOT-TIMER CONTROL CIRCUIT OPERATION (OPTIONAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKING SEQUENCE</td>
<td>Driving Cylinder is in “Advanced” Position with Feed Pawl &amp; Anti-Back-Up Pawl Locking Table in Working Position.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETRACTION STROKE</td>
<td>Momentary Pressure Pilot Signal to Four Way Valve will automatically provide functions described under basic operation.</td>
<td>Momentary Bleed Pilot Signal to Four-Way Valve will automatically provide functions described under basic operation.</td>
<td>Supply Air to Circuit and Table will continuously cycle as follows: 1) Upon bleeding of air from Pilot Timer, Valve will shift causing Cylinder to retract. 2) At end of retraction stroke, Cylinder actuates Two-Way Valve, which recharges Timer and shifts Main Valve to advance Cylinder and rotate Top Plate forward. 3) Timer provides dwell according to the Leak Control Setting. Upon completion of dwell, cycle then repeats as above.</td>
</tr>
<tr>
<td>DRIVE STROKE</td>
<td>When Cylinder completes retraction, built-in Three-Way Valve is actuated by Piston, shifting Main Valve to provide functions described under basic operation. Four-Way Valve is ready for next signal following dwell period.</td>
<td>When Cylinder completes retraction, built-in Two-Way Valve is actuated by Piston, shifting Main Valve to provide functions described under basic operation. Four-Way Valve is ready for next signal following dwell period.</td>
<td></td>
</tr>
<tr>
<td>INDEXED POSITION</td>
<td>At completion of drive stroke, Feed Pawl locks Table against forward movement and Anti-Back-Up Pawl locks against rearward movement during work at stations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TABLE SHOWN WITH INDEX PLATE & CENTER STUD ASSEMBLY REMOVED**

**POSITIVE LOCK FEATURE:**
*(11-F & 11-EF SERIES ONLY)*

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>POSITIVE LOCK OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKING POSITION</td>
<td>Driving Cylinder is in advanced position with constant air supply through Sequence Valve to Auxiliary Cylinder, latching Pawl over center to provide a rigid mechanical lock.</td>
</tr>
<tr>
<td>RETRACTION STROKE</td>
<td>Sequence Valve exhausts Auxiliary Cylinder disengaging Feed Pawl, then exhausts rear of Driving Cylinder causing retraction.</td>
</tr>
<tr>
<td>DRIVE STROKE</td>
<td>At end of retraction sequence valve charges Auxiliary Cylinder, then charges rear of Driving Cylinder advancing it, rotating Table to next position. Optional Hydraulic Check cushions last 5° of rotation.</td>
</tr>
<tr>
<td>INDEXED POSITION</td>
<td>Sequence Valve maintains pressure on rear of Driving Cylinder and Auxiliary Cylinder latching Pawl linkage over center, providing a rigid mechanical lock in indexed position.</td>
</tr>
</tbody>
</table>
NOTES: 1) The above figures are based on maximum pressure of 80 P.S.I.
2) Tabulations based on weights placed symmetrically 1" from periphery of Top Plates
MODEL 725 CLOCKWISE ROTATION

(4) 7/16 HOLES FOR HORIZONTAL M’T’G.
(3) 1/4-20 SOC. SCRW
(3) 1/4-20 HOLES IN TOP PLATE

1/4 N.P.T.
8.00
1.92
3.386
1.375 D

5.30
3.4375
4.6250

1/4 N.P.T.

1/4 N.P.T.

1 1/2 X 4" ACTING CYL

2.25

2.69
3.75
5.375

1.5625

3.125

2.4375

1.875

1.47

0.938

3.129

7.25

1.3125 EXTENDED
1.1875 RETRACTED

3.386

NOTE:
1) THESE DRAWINGS ARE FOR LAYOUT PURPOSES ONLY AND DO NOT INDICATE ANY SPECIFIC POSITION OF THE TOP PLATE OR ITS FASTENERS
MODEL 725 COUNTERCLOCKWISE ROTATION

1/4 N.P.T.

1/4 N.P.T.

1 1/2 X 4" ACTING CYL

1/4 N.P.T.

(3) 1/4-20 HOLES IN TOP PLATE

(3) 1/4-20 SOC. SCREW

(4) 7/16 HOLES FOR HORIZONTAL M'T'G.

(2) 7/16 HOLES FOR VERTICAL MOUNTING

1.3125 EXTENDED

1.1875 RETRACTED

NOTE:
1) THESE DRAWINGS ARE FOR LAYOUT PURPOSES ONLY AND DO NOT INDICATE ANY SPECIFIC POSITION OF THE TOP PLATE OR ITS FASTENERS
MODELS 11-E, 11-EF & 11F CLOCKWISE ROTATION

*3 23/32 WITH 16" OR 20" DIA TOP PLATE. **3/8 FOR 16" OR 20" DIA TOP PLATE

NOTE: 1) THESE DRAWINGS ARE FOR LAYOUT PURPOSES ONLY AND DO NOT INDICATE ANY SPECIFIC POSITION OF THE TOP PLATE OR ITS FASTENERS

2) DIMENSIONS SHOWN ARE FOR THE STANDARD DRIVE CYLINDER ONLY.
MODEL 11-E COUNTERCLOCKWISE ROTATION

NOTE:
1) THESE DRAWINGS ARE FOR LAYOUT PURPOSES ONLY AND DO NOT INDICATE ANY SPECIFIC POSITION OF THE TOP PLATE OR ITS FASTENERS

2) DIMENSIONS SHOWN ARE FOR THE STANDARD DRIVE CYLINDER ONLY

*3 23/32 WITH 16" OR 20" DIA TOP PLATE
**3/8 FOR 16" OR 20" DIA TOP PLATE